
Code Critiquer in C

DESIGN DOCUMENT

Team 34

Client: Iowa State University and Michigan Tech University

Advisor: Dr. Rover

TeamMembers:

Nicholas Carber Regex Support

Conner Cook AST Support

Brandon Ford Database Admin

Emily Huisinga Frontend

Sage Matt Frontend

Cade Robison Test Suite Support

TeamWebsite:

sdmay24-34.sd.ece.iastate.edu

Team Email:

sdmay24-34@iastate.edu

Revised:

November 30th, 2023

Version 2.0

https://sdmay24-34.sd.ece.iastate.edu

2

Table of Contents

Executive Summary 5

Development Standards & Practices Used 5

Summary of Requirements 5

Applicable Courses from Iowa State University Curriculum 5

New Skills/Knowledge Acquired 5

1 - Team 6

1.1 TeamMembers 6

1.2 Required Skill Sets 6

1.3 Skill Sets Covered 6

1.4 Project Management Style 6

1.5 Initial Project Management Roles 6

2 - Introduction 7

2.1 Problem Statement 7

2.2 Requirements & Constraints 7

2.3 Engineering Standards 8

2.4 Intended Users and Uses 8

3 - Project Plan 9

3.1 Task Decomposition 9

3.2 Project Management/Tracking Procedures 11

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 11

3.4 Project Timeline/Schedule 11

3.5 Risks And Risk Management/Mitigation 12

3.6 Personnel Effort Requirements 13

3.7 Other Resource Requirement 14

4 Design 15

4.1 Design Content 15

4.2 Design Complexity 15

4.3 Modern Engineering Tools 15

4.4 Design Context 16

4.5 Prior Work/Solutions 16

4.6 Design Decisions 17

4.7 Proposed Design 17

4.7.1 Design v1 (Initial Design) 17

System Sketch 18

Functionality 20

4.7.2 Design v2 20

System Sketch 20

ER Diagram of the Database 21

Component Diagram 21

UI Diagram 22

Functionality 22

4.8 Technology Considerations 22

3

4.9 Design Analysis 23

5 Testing 23

5.1 Unit Testing 23

5.2 Interface Testing 24

5.3 Integration Testing 24

5.4 System Testing 24

5.5 Regression Testing 24

5.6 Acceptance Testing 24

5.7 Security Testing 25

5.8 Results 25

6 Implementation 26

7 Professionalism 29

7.1 Areas of Responsibility 29

7.2 Project-Specific Professional Responsibility Areas 30

7.3 Most Applicable Professional Responsibility Area 31

8 Closing Material 32

8.1 Discussion 32

8.2 Conclusion 32

8.3 References 32

8.4 Team Contract 33

TeamMembers 33

Team Procedures 33

Participation Expectations 33

Leadership 34

Collaboration and Inclusion 34

Goal-Setting, Planning, and Execution 35

Consequences for Not Adhering to Team Contract 35

4

List of Figures

Figure 1 - Task Dependency Chart 10

Figure 2 - Gantt Chart/Task Timeline 11

Figure 3 - System Sketch v1 18

Figure 4 - ER Diagram v1 18

Figure 5 - System Sketch v2 20

Figure 6 - ER Diagram v2 21

Figure 7 - Component Diagram 21

Figure 8 - UI Diagram 22

List of Tables

Table 1 - Task Start/End Dates 12

Table 2 - Task Points and Descriptions 13

Table 3 - Effects of Code Critiquer in C 16

Table 4 - Society-Specific Code of Ethics 29

5

Executive Summary

DEVELOPMENT STANDARDS & PRACTICES USED

● Software Practices:

○ Code Review: useful to double-check work

○ Software Testing: while annoying, testing can help find mistakes

○ Follow naming conventions for C

● ABET Criteria:

○ Apply knowledge of mathematics, science, and engineering

○ Design a system, component, or process to meet desired needs within

realistic constraints

○ Identify, formulate, and solve engineering problems

SUMMARY OF REQUIREMENTS

● The critiquer should be easy and intuitive to use for novice programmers

● The messages from the program should be helpful and descriptive

● The program should catch most of the common antipatterns in C

APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM

● COM S 185: a basic introduction to C

● COM S 309: understanding project management

● COM S 311: understanding of algorithms

● COM S 317: understanding of software testing

● COM S 327: further development and understanding of C

● CPR E 288: understanding of embedded systems

NEW SKILLS/KNOWLEDGE ACQUIRED

● Software project management

● Parsing a C program into key parts

● Identifying antipatterns in C

● Crafting error messages that are clear to novice programmers

6

1 - Team

1.1 TEAM MEMBERS

Nicholas Carber

Conner Cook

Brandon Ford

Emily Huisinga

Sage Matt

Cade Robison

1.2 REQUIRED SKILL SETS

1. Understanding Of C

2. Knowledge of patterns and anti-patterns in C

3. Understanding of common mistakes from new C programmers

4. Knowledge of CPR E 288

5. Agile Project Management

1.3 SKILL SETS COVERED

1. Everyone

2. No one

3. Everyone

4. Brandon Ford

5. Everyone

1.4 PROJECT MANAGEMENT STYLE

Agile structure - sprint length TBD (Probably 2-4 weeks)

1.5 INITIAL PROJECT MANAGEMENT ROLES

Design Document Maintainer / Official Submitter - Emily Huisinga

Website Maintainer - Sage Matt

Main Contact with Dr. Rover - Nicholas Carber

Michigan Tech Liaisons - Brandon Ford, Cade Robinson

System Sketch Maintainer - Nicholas Carber, Conner Cook

Developers - Everyone, to be divided further depending on specifics

7

2 - Introduction

2.1 PROBLEM STATEMENT

Novice C programmers, specifically CPR E 288 students, need an easy-to-use tool to

provide feedback on their C code and help them debug errors in their code. The C

compiler alone does not always provide helpful feedback to programmers, especially

novice programmers. This critiquer will use compiler feedback and conduct its own

analysis of the code to help generate more detailed feedback. The code critiquer will also

catch style errors that a normal compiler doesn’t check for.

2.2 REQUIREMENTS & CONSTRAINTS

UI Requirements

● GUI should be simplistic and easy to use for novice programmers

● All feedback for errors should be presented to the users in a way novice

programmers can understand

Maintainability Requirements

● The database should be easy to update with new antipatterns

● The project should be of the same design and standard that Michigan Tech has

developed for their other code critiquer in different languages

● The project should be well-documented and easy for another team to pick up

when we have completed our part

Functional Requirements

● Files in C should be uploaded successfully

● The program should be able to compile the uploaded code

● Provide proper feedback for at least five compile errors

● Provide proper feedback for at least five style errors

● Allow test suites to be uploaded to run code against to check for runtime errors

and check output against expected results

● The program should be able to communicate with a database that stores the C

antipatterns

● The program should run through the command line and eventually a GUI

Testing Requirements

● Should be tested with code from both novice and advanced programmers

8

Legal Requirements

● Have grad students complete CITI training

● Get exempt status from IRB (Institutional Review Board) to use students’ code

Performance Requirements

● The code analysis process should take no more than double the time it takes to

run the program

● The file upload should take no more than a few seconds and have no loss of data

Constraints

● Time - We have two semesters to get this project designed and implemented

● Storage Space - We may have limited storage for our database where we store

data on common C anti-patterns

● Human Ability - We won’t be able to think of every possible error or antipattern

that a user could run into

2.3 ENGINEERING STANDARDS

First and foremost, we will follow the standards that Michigan Tech has set with their

Java and MATLAB Code Critiquers. We will abide by best practices and standards for the

C and Python languages as we will use C and Python. Since there is also a strong

possibility that we will need to create our own databases, we will ensure our databases

and ER diagrams are standardized. The communication between the UI and the backend

must also be standardized.

2.4 INTENDED USERS AND USES

This project will benefit any novice programmers working in C, providing them with a

user-friendly interface that will debug their code and check for antipatterns. More

specifically, this will be implemented in Iowa State’s CPR E 288 class to help those

students write better C code. Michigan Tech will also eventually implement this

alongside the other code critiquers they have written or are working on.

9

3 - Project Plan

3.1 TASK DECOMPOSITION

● Create a database to store desired anti-patterns

○ Description: Create a database to store desired anti-patterns and test

code.

○ Justification: This is necessary for the functional requirement that the

program should be able to communicate with a database that stores the C

antipatterns.

○ Subtasks:

■ Create tables with necessary fields in the database

■ Insert anti-pattern data into the tables

● Connect application to database to read from anti-pattern data

○ Description: The frontend application must be connected to the backend

database.

○ Justification: This fulfills the functional requirement that the program

should be able to communicate with a database that stores the C

antipatterns.

○ Subtasks:

■ Set up a toy database to get the initial connection with MySQL

● This will be a barebones database so that we can test the

connection between the application and the database

■ Set up to official anti-pattern database with MySQL

● This will be the complete database with all of the necessary

tables and data

● Handle file upload

○ Description: The application allows users to choose a file to be uploaded

to the critiquer system

○ Justification: This fulfills the functional requirement that files in C should

be uploaded successfully.

○ Subtasks:

■ Set up a way to prompt the user for a file to upload

■ Read the file data into the application

● System identifies desired compile errors

○ Description: The application can identify at least five compile time errors

upon being run with a sample of code.

○ Justification: This is necessary for the functional requirement of catching

all compile errors.

○ Subtasks:

■ Groups of similar anti-patterns

10

● Provide feedback for at least one anti-pattern

○ Description: The application must provide users with useful information

on their error and potential ways to fix it.

○ Justification: This fulfills the UI requirement for providing feedback to

the user in a way they can understand and the functional requirement for

the program should be able to compile and run the uploaded code.

○ Subtasks

■ Terminal feedback

■ GUI feedback

● Test suite support

○ Description: Professors should be able to add tests that can run against

students’ submitted code to provide custom feedback.

○ Justification: This meets the requirement of allowing professors to test

students’ code.

● System identifies desired style errors

○ Description: The application can identify at least five style errors.

○ Justification: This is necessary for the functional requirement of catching

most style errors.

○ Subtasks

■ Groups of similar anti-patterns

● Allow the professor to add more anti-patterns to the database

○ Description: The professor can add a new anti-pattern to the database

through the user interface.

○ Justification: This fulfills the maintainability requirement of the database

and should be easy to update with new antipatterns as professors find

more.

○ Subtasks

■ Create an interface to submit

■ Connect the interface to the database

Figure 1 - Task Dependency Chart

11

3.2 PROJECT MANAGEMENT/TRACKING PROCEDURES

We will use the agile project management style as we have all used it before and have

found it effective. Dr. Rover and Michigan Tech also have experience with Agile, making

collaboration easier.

We will use the GitLab repo and the GitLab issues to track our progress and store our

project.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Key milestones:

● Must recognize at least ten anti-patterns and give valuable feedback

● Should recognize and give feedback on at least five compile-time errors

● Corresponding test suites identify their specified anti-patterns uploaded by

professors

● Critiquer does not crash on unrecognized errors

3.4 PROJECT TIMELINE/SCHEDULE

Figure 2 - Gantt Chart/Task Timeline

12

Table 1 - Task Start/End Dates

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Agile projects can associate risks and risk mitigation with each sprint.

Risks:

1. Create Database: database is not created, 0.1

2. Connect To Database: application can’t connect to database, 0.1

3. File Upload: file is not uploaded correctly, 0.5

a. Reasoning: Users could potentially upload malicious files.

b. Solution: We could run code in its own environment so it will not harm or

interfere with our application.

4. Provide feedback for antipatterns: feedback is not printed correctly, 0.1

5. System identifies compiler errors: compiler errors are not identified or identified

incorrectly, 0.2

6. System identifies run-time errors: runtime errors are not identified or identified

incorrectly 0.3

7. System identifies style errors: style errors are not identified or identified

incorrectly 0.3

8. Allow professors to add antipatterns to the database: professors cannot add

antipatterns to the database, 0.5

a. Reasoning: Users could potentially add erroneous or malicious

antipatterns to the database.

b. Solution: Each user has their own local database for storing new

antipatterns

Task name Start date End date

Create DB 1/22/2024 2/4/2024

Connect to DB 1/22/2024 2/4/2024

File upload 1/22/2024 2/4/2024

Compile time errors 2/5/2024 3/3/2024

GUI development 3/4/2024 5/6/2024

Test suite support 3/4/2024 3/24/2024

Style errors 3/25/2024 4/7/2024

1st full feedback 4/8/2024 4/21/2024

Professor can add to DB 4/22/2024 5/6/2024

13

3.6 PERSONNEL EFFORT REQUIREMENTS

Task Effort

Points

Explanation

Create database for anti-patterns

Create tables 2 Only need 1 or 2 simple tables

Insert anti-patterns 20 Need to create regular expressions from anti patterns

Connect application to database

Create toy database 2 Simple initial connection

Connect actual

database

3 Experience from initial connection will make this easy

Handle file uploads

Prompt user for file 2 Command line prompt - “Enter filename:”

Read file data into

application

4 Load a file into the application and make sure we can

access the data after building an Abstract Syntax Tree

System identifies errors

Compile errors 30 Need to worry about multiple files. Need to run the

program through regex data.

Run-time errors 40 Textual analysis done without running the program

Style errors 15 Match the regexes from the database

Provide feedback for antipatterns

Terminal feedback 5 Output formatted feedback generated by the program

GUI feedback 15 Have to build a GUI that will eventually connect to the

main application

Allow professors to add antipatterns to the database

Create interface to

add antipatterns

5 Basic form for new antipattern information, which then

gets stored in the database

Connect interface to

database

5 Create an SQL INSERT statement to put the new

anti-pattern data into the database

Table 2 - Task Points and Descriptions

14

3.7 OTHER RESOURCE REQUIREMENT

We have established that we will need some sort of server to host the anti-pattern

database. A temporary solution for this could be the High-Performance Clusters we can

access through class. For a longer-term solution, we can ask Michigan Tech if they have a

server we can use.

15

4 Design

4.1 DESIGN CONTENT

Our first design concept for the Code Critiquer is as follows. The Code Critiquer will be,

first and foremost, an application where students can upload their work with the ability

to configure what errors they want to look for. They would receive feedback similar to

compiler feedback, except more specific and understandable way by even programming

novices. Eventually, the application would be hooked up to Canvas as an External App

using LTI tools. However, after further research and understanding of our project, our

first design needed to be revised. Please reference section 4.7.2 is our updated design for

the Code Critiquer.

4.2 DESIGN COMPLEXITY

The design we came up with includes multiple components such as the GUI, main

application, abstract syntax tree builder, the database, and the Canvas LTI module. One

engineering principle we use is the layered architecture structure. This is the architecture

design where each module can only access the layer above and below it. This limits each

component's dependencies and lowers the chance of a circular dependency.

One challenging requirement is to generate valuable feedback for errors in C code.

Currently, the GNU C compiler doesn’t provide feedback on how to fix certain errors.

Another challenging requirement is allowing professors to upload tests to run students'

code with.

Additional complex components of the critiquer are generating the Abstract Syntax Tree

and the corresponding XPath. These are two very important aspects of the Critiquer

required to identify a subset of Anti-Patterns easier compared to a Regular Expression.

4.3 MODERN ENGINEERING TOOLS

For the development of this design, we will use draw.io to create a frontend layout.

Depending on the developer's preference, we will use either Visual Studio Code or

JetBrains software to develop the code.

A big tool we are leveraging is the Clang Compiler and its Static Analyzer. This system

allows us to quickly generate the required foundational structures (abstract syntax tree)

for identifying antipatterns in the student’s code. We will also employ the Python

language to develop our system as it provides easy-to-use libraries and syntax. The

database will be through MySQL.

16

4.4 DESIGN CONTEXT

Code Critiquer in C is designed for programming learners to provide instant feedback on

their code and improve their programming skills. It also benefits teachers, as it can be

used in tandem with coursework and save them valuable time that would be spent

correcting simple errors.

Area Effects of Code Critiquer in C

Public health,

safety, and

welfare

This project will greatly improve the mental health of students

struggling to learn programming but feel that they have nowhere to

go for help to learn.

Global,

cultural, and

social

There are several ways that Code Critiquer in C can both positively

and negatively impact our profession. It can be used to create a

generation of programmers who have incredibly strong

programming skills. On the other hand, if the Code Critiquer in C

were to become good enough, future programmers may become lazy

and rely on the critiquer to make corrections. It would be similar to

how our generation has become increasingly poor spellers as we rely

on autocorrect.

Environmental This project will have a minimal environmental impact, except for

the energy it takes to run the device on which the application will be

run.

Economic This project has the potential to inflate the market with

programmers, as students will feel more supported during the

learning process and, therefore, will be less likely to drop out.

Additionally, if the Code Critiquer in C technology could become

advanced enough, it could decrease the demand for programming

tutors.

Table 3 - Effects of Code Critiquer in C

4.5 PRIOR WORK/SOLUTIONS

We are extremely fortunate to have contact with Michigan Tech, who have already

created Code Critiquers in MATLAB, Python, and Java. They have graciously allowed us

to analyze their code critiquers to aid in our own development.

Michigan Tech's Python Code Critiquer:

Advantages: Due to the many useful libraries that Python has available, we have

decided to create our C Code Critiquer in Python. As such, the Python Code Critiquer,

written in Python, will have the most similar code structure to ours.

Shortcomings: As C is a much lower-level language and has the tricky issue of

memory management, our C Code Critiquer will become much more complex than

the Python Code Critiquer.

17

Michigan Tech's Java Code Critiquer:

Advantages:Michigan Tech's Java Code Critiquer has the most thorough database of

antipatterns and will be most useful to us, as Java and C have their similarities

(though many, many differences).

Shortcomings: The Java Code Critiquer is written in Java, and as we will be writing

our Code Critiquer in Python, this code structure will be useless to us.

Michigan Tech's MATLAB Code Critiquer:

The MATLAB Code Critiquer offers nothing unique to us that the Python and Java

Code Critiquer don't already offer. Nevertheless, it is still a useful tool in our pockets.

Pros for our Code Critiquer In C compared to other Code Critiquers:

As far as we are aware, there has been no Code Critiquer made for a language as low

level as C. Thus, our project will fill an important gap in autonomous code critiquing

for students learning C.

Cons for our Code Critiquer In C compared to other Code Critiquers:

N/A

4.6 DESIGN DECISIONS

1. We had to decide to allow professors to upload their own code.

2. We had to decide to implement it as a command-line application before creating a

GUI/importing it to Canvas

3. We had to make decisions to allow for personal configurations. For example, to choose

whether you want to check for certain types of errors, or whether you want to critique

only one file or multiple files via a Makefile.

4.7 PROPOSED DESIGN

4.7.1 Design v1 (Initial Design)

The C code critiquer system consists of 3 main components: the website, the database,

and the critiquer server. After the student logs in, they can upload their code to the

website or canvas. From there, the code critiquer logic will be called from the server. This

component will check the uploaded code against the antipatterns stored in the database.

After finding all the errors in the student’s code, the critiquer will return the feedback to

the student through where the code was uploaded.

18

System Sketch

Figure 3 - System Sketch v1

Figure 4 - ER Diagram v1

19

Student Code: The student will submit the code files. These can be in the form of a

single C file or a makefile for compiling multiple files. This should fulfill the functional

requirements of allowing a student to upload their code and the performance

requirements of uploading the code in an acceptable amount of time. This is a vital

aspect of the functional requirement that students should be able to upload code to the

application.

Code Critiquer Application: This interface will allow students to interact with the

system (upload code, see results, etc). This will help fulfill many of the functional

requirements, such as students being able to upload code and receive feedback on errors.

LTI Module: Connection point between Canvas and the Code Critiquer System. The

LTI Module follows standard practice for connecting LMS and LTI systems. This will

help fulfill the UI Requirement that the application will have to be run through a GUI (in

this case, Canvas).

Canvas LMS: This is the Canvas everyone knows and loves here at Iowa State.

Eventually, using the LTI Module, we will connect the application to Canvas for students

to upload their code and receive feedback. This will fulfill the UI Requirement that the

application will be run through a GUI (in this case, Canvas).

Critiquer Server: This will consist of the code critiquer application and the abstract

syntax tree builder. The code critiquer will analyze the student’s code using the

anti-pattern data in the database and generate appropriate feedback based on any errors

found. The abstract syntax tree builder reads in the students' code and generates an

abstract syntax tree for the critiquer to analyze. This will help fulfill the functional

requirement that students will receive feedback from antipatterns stored on a database

(which will be hosted on the server).

Database: The database will hold all the information for the antipatterns to check

against the uploaded code. This is critical to the software's functionality as the system

needs a place to store all the antipatterns. The database will also hold the tests the

instructors upload for the particular assignment. This is also crucial to the requirement

that the system needs to run the uploaded code. Without these tests, there is no way to

run the code and have an expected output. This will help fulfill the functional

requirement that students receive feedback from antipatterns stored in a database.

20

Functionality

The Code Critiquer will be, first and foremost, an application where students can upload

their work. They can either upload a single file to get it critiqued or upload a project,

which would require a makefile. Once the file or project is uploaded, they would click a

very prominent "Critique" button and receive feedback. On the backend, the application

would be hooked up to a database with antipatterns, and the program would scan the file

or project for the presence of these antipatterns. The feedback would be similar to

compiler feedback, except more specific and worded understandably by even

programming novices. Eventually, the application would be hooked up to Canvas as an

External App using LTI tools.

The current design satisfies the functional and non-functional requirements very well.

4.7.2 Design v2

Updated design from 4.7.2.

System Sketch

Figure 5 - System Sketch v2

21

ER Diagram of the Database

Figure 6 - ER Diagram v2

Component Diagram

Figure 7 - Component Diagram

22

UI Diagram

Figure 8 - UI Diagram

Functionality

The second iteration of the design is similar to the first in most ways. The only change

was removing Canvas integration due to the difficulty of implementing this in the given

timeframe.

4.8 TECHNOLOGY CONSIDERATIONS

One huge technology consideration that had to be made was what language to write the C

Critiquer in. So far, Michigan Tech has followed the pattern of creating their critiquers in

the same language that their critiquers are critiquing. That would mean that, if we

followed this pattern, we would create our critiquer in C. However, as a relatively

low-level language, C needs more libraries than higher-level languages have. As such, we

have decided to break this pattern and write the C Critiquer in Python. Python already

has many libraries useful for testing C code. Utilizing these libraries will help us use our

time best and create the best final application.

23

Another consideration is what to use for a server to host the database. Short-term, we

plan on using high performance clusters offered through this class. Long-term, we plan

to use the servers that Michigan Tech already has.

We have decided to use MySQL for our database as we all have experience with it from

other classes. Finally, for our IDEs, we have decided to use both PyCharm and Visual

Studio Code, depending on the individual programmer.

4.9 DESIGN ANALYSIS

Initially, our design in 4.7.1 included plans to integrate the Code Critiquer with Canvas as

an external application with LTI Tools. However, Michigan Tech received feedback from

their students that they did not like the Canvas interface. As such, we decided to remove

the plans to integrate with Canvas and instead have the Code Critiquer as an

independent application. Additionally, we have decided to move from using React to

using Flask instead as a framework. This will allow us to centralize our code base with

Python. Otherwise, as we have been working on the project, identifying antipatterns, and

preparing feedback for the antipatterns, our initial design has held up well.

There are many opportunities for improvement for the C Critiquer. We can always add

the ability to catch more antipatterns. Additionally, we can add more opportunities for

teachers and students alike to customize the C Critiquer to their preferences. This

includes configuring what antipatterns are identified, adding multiple classes with

unique configurations, and adding multi-file projects.

24

5 Testing

Our testing strategy uses the unittest library to test our Python code which makes up

most of our code base. For any JavaScript code we include in our user interface, we will

use Jest. One of the challenges we will face when doing our acceptance testing is that we

will need to use students’ code to test that the system generates the correct feedback and

is usable from a student’s perspective.

5.1 UNIT TESTING

The framework we will be using to test our software will be the unittest library for

Python. This should help us easily test all the functions needed for each class.

Additionally, we will use the Jest framework when testing individual units on our UI that

use JavaScript. We can ensure each component is working by breaking down our system

into these units.

5.2 INTERFACE TESTING

Some of the interfaces in our design will be the Abstract Syntax Tree, the regex matcher,

the User Interface, and the feedback generator. Because our code will be almost entirely

Python, we will use the unittest library to create test suites for those interfaces. For any

JavaScript we include in our user interface, we will use Jest to test that code.

5.3 INTEGRATION TESTING

We will have to test three main communications for integration. The first is the

communication between the application logic and the database. We will test this by

attempting to connect to the database and checking for connection errors. We will be

using the MySQLdb library for connecting the application to the database so we will have

to test any functions we create using this library.

The second integration test category is UI communication. We must test that the UI can

effectively transmit data from the user to the application logic. Again, we will have to

ensure no errors occur when connecting to the application and that no data is corrupted

when making the connection. This will be done by testing manually.

5.4 SYSTEM TESTING

We will provide the system with example code and test that the system generates the

expected results. The feedback should be based on the data we have stored in the

database, and it should be displayed correctly. This will be done using several simple

pre-generated code blocks, supplying them to the critiquer system, and comparing the

generated output with our pre-defined expected results. By doing this, we can verify,

given the same code, that the system works as expected, yielding consistently correct

responses.

25

5.5 REGRESSION TESTING

Regression testing will help ensure that new code pushed to GitLab won’t break the

current functionality. Any previously written tests can help catch unexpected changes.

Therefore, all the tests described in previous sections will be helpful with regression

testing.

Writing tests for every component, even when it seems straightforward and unlikely to

break, can help catch changes that break unexpected parts of the code. Keeping all tests

can also help catch unexpected effects on old code. When writing code locally, ensuring

that our local codebase is up to date (pulling from GitLab frequently) can help avoid

merge conflicts. Running all tests before pushing code to GitLab can ensure breakages

are found before being merged into the codebase. Running tests with a local copy of the

database can also ensure changes don’t break anything in the global database.

5.6 ACCEPTANCE TESTING

● Functional

○ Goals for compile time, runtime, and style errors should be met with

appropriate feedback. Specifically, successfully give feedback on at least

five errors in each category.

○ Critiquer should not extend the time to run a program by more than

double. (estimate - can change)

● Non-Functional

○ Command-line and GUI should be intuitive for novice programmers.

○ Modular database with easy extensibility.

Functional tests will have either unit tests or performance tests that pass for each

requirement. Non-functional tests will be reviewed by our faculty mentor, Michigan

Tech’s team, and some beginner programmers from Iowa State.

5.7 SECURITY TESTING

We will be storing user data in our database, so we will need to be able to encrypt

sensitive data that will be stored. We will use predefined and proven encryption

methods, so we will not need to test said functions. However, we must ensure data

cannot be leaked from our database. Therefore, we should sanitize all of our SQL

queries. Also, since we are allowing professors to upload their own code to test the

student’s code, we need to make sure that malicious code cannot alter the application's

behavior in any way. Our solution for this is to run the professor’s code in its own

environment so that it can’t impact the execution of the application. Testing these

functionalities should be pretty straightforward, as we just need to make sure all queries

are sanitized and no plaintext of sensitive information makes it into the database.

Furthermore, to prevent injection attacks through uploaded code, we will test to ensure

that the code uploaded will run in its own environment and, in the event of a crash of

said environment or a breach of said environment, the application environment will not

be affected.

26

5.8 RESULTS

By developing tests to cover each aspect—unit, integration, system, and so on—we can

ensure that we meet functional requirements. By respecting the testing process, we

ensure that we follow best practices to develop a system that meets the guidelines we

have previously identified. As a whole, testing provides both verification and validation

of our system.

27

6 Implementation

We have planned out the project structure/architecture and come up with a list of all the

code files we will need. The model-view-controller (MVC) design pattern is how we

designed our project structure. The models would be our logic components that critique

the student’s code and will be written in Python. The views are the frontend files that

deal with the website user interface. This includes any HTML, CSS, and JavaScript files.

The controllers will handle the request mapping, run the logic components as needed,

and return the correct views for the page the user is trying to access. The controllers will

be written in Python using the Flask microframework.

Models:

● DBConnection

○ Handles any interaction with the database

● FeedbackGenerator

○ Starting point for kicking off the critiquer

○ Runs AST, regex, xpath, and test cases

○ Returns feedback data as JSON

● AbstractSyntaxTree

○ Creates AST from student code

○ Detects antipatterns that are found with the AST

● RegexMatcher

○ Selects all antipatterns from the database that have a regex expression

stored

○ Uses the regex to detect those antipatterns

● XPathMatcher

○ Selects all antipatterns from the database that have an xpath expression

stored

○ Uses the xpath to detect those antipatterns

● TestCaseRunner

○ Runs any test code that the professor has uploaded for the assignment

Views:

● Landing

○ Enter code for students, log in or sign up as instructor

● Signup

○ Takes in information to create an account

○ Redirects to log in on account creation

● Login

○ Takes email and password to login

28

● Instructor Home

○ Home page for instructors

○ Shows assignments and custom antipatterns

○ Can edit an assignment or antipattern or create a new one

● Edit Assignment

○ Form for all fields related to storing an assignment

○ Can select / deselect custom antipatterns to be used for this assignment

○ Upload test cases here

● Edit Antipattern

○ Form for all fields related to storing an antipattern

● Code Upload

○ Page where student code is uploaded

● Code Feedback

○ Displays code feedback

Controllers:

● __init__.py

○ Import necessary libraries for Flask

○ Start Flask application

○ Register any error handling for bad requests, etc

● LandingController

○ ‘/’ GET mapping

■ Return landing.html

● SignupController

○ ‘/signup’ GET mapping

■ Return signup.html

○ ‘/signup’ POST mapping

■ Handle account creation

■ Redirect to ‘/login’ on successful account creation

● LoginController

○ ‘/login’ GET mapping

■ Return login.html

○ ‘/login’ POST mapping

■ Handle login, create session for user

■ Redirect to ‘/instructor/home on successful login

● InstructorHomeController

○ ‘/instructor/home’ GET mapping

■ Fetch instructor data using session info

■ Return instructor_home.html

● EditAssignmentController

○ ‘/edit/assignment/{id}’ GET mapping

■ Return edit_assignment.html with current values filled in

29

○ ‘/edit/assignment/{id}’ PUT mapping

■ Update assignment details in database

■ Redirect to ‘/instructor/home’

● CreateAssignmentController

○ ‘/create/assignment’ GET mapping

■ Return edit_assignment.html with blank values filled in

○ ‘/create/assignment’ POST mapping

■ Create new assignment in database

■ Redirect to ‘/instructor/home’

● EditAntipatternController

○ ‘/edit/antipattern/{id}’ GET mapping

■ Return edit_antipattern.html with current values filled in

○ ‘/edit/antipattern/{id}’ PUT mapping

■ Update antipattern details in database

■ Redirect to ‘/instructor/home’

● CreateAntipatternController

○ ‘/create/antipattern’ GET mapping

■ Return edit_antipattern.html with blank values filled in

○ ‘/create/antipattern’ POST mapping

■ Create new antipattern in database

■ Redirect to ‘/instructor/home’

● CodeUploadController

○ ‘/code/{access_code}/upload’ GET mapping

■ Return code_upload.html

○ ‘/code/{access_code}/upload’ POST mapping

■ Upload file to server and start analysis

■ Show loading screen until finished then redirect to

‘/code/{access_code}/feedback’

● CodeFeedbackController

○ ‘/code/{access_code}/feedback’ GET mapping

■ Return code_feedback.html

30

7 Professionalism

This discussion concerns the paper titled “Contextualizing Professionalism in Capstone

Projects Using the IDEALS Professional Responsibility Assessment,” International

Journal of Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1 AREAS OF RESPONSIBILITY

Area of

Responsibility

Definition NSPE Canon How SE code

addresses

responsibility

Difference

between SE code

and NSPE

Work

Competence

Perform work of

high quality,

integrity, timeliness,

and professional

competence.

Perform services

only in areas of

their competence;

Avoid deceptive

acts.

SE 1.03 specifies

that one should be

qualified for the

work that they are

doing. SE 6.08

says to avoid

making deceptive

claims about your

software.

SE 6.08 says to

avoid making

deceptive claims

about your software,

but nowhere does it

say to avoid

deceptive acts in

general.

Financial

Responsibility

Deliver products and

services of realizable

value and at

reasonable costs.

Act for each

employer or client

as faithful agents

or trustees.

SE 1.14 addresses

this as it aims to

promote

maximum quality

with minimum

cost to employer,

client, user, and

public.

The SE code

addresses the

monetary and

quality of the final

product, whereas

the NSPE specifies

that one should act

faithfully to their

employer or client.

Communication

Honesty

Report work

truthfully, without

deception, and

understandably to

stakeholders.

Issue public

statements only in

an objective and

truthful manner;

Avoid deceptive

acts.

SE 2.06 specifies

that statements

should be truthful

and fair, especially

regarding software

and related

documents.

SE emphasizes that

SE documents must

be faithful

regardless of public

or not whereas

NSPE is more

overall on all public

statements.

Property

Ownership

Respect the

property, ideas, and

information of

clients and others.

Act for each

employer or client

as faithful agents

or trustees.

SE 4.03 and 7.03

discuss only using

the property of

others in proper

and authorized

ways and giving

full credit to

others.

NSPE focuses on the

relationship of

acting in good faith

with the employer

or client, whereas

SE is giving credit to

all regardless of

whom they are

addressing.

Health, Safety,

Well-Being

Minimize risks to the

safety, health, and

well-being of

stakeholders

Hold paramount

the safety, health,

and welfare of the

public.

SE 6.10 states the

need to obey all

laws governing

their work to be

consistent with

public health,

safety, and

welfare.

SE references

governing rules and

laws to prioritize

public safety,

whereas the NSPE is

more general,

keeping it at the

forefront.

31

Sustainability Protect the

environment and

natural resources

locally and globally.

SE 2.02 mentions

that software

should be

approved only if it

meets appropriate

tests and does not

diminish the

quality of life or

harm the

environment.

SE code addresses

the responsibility of

sustainability,

whereas the NSPE

table does not

mention it.

Social

Responsibility

Produce products

and services that

benefit society and

communities.

Conduct

themselves

honorably,

responsibly,

ethically, and

lawfully to

enhance the

honor, reputation,

and usefulness.

SE 6.02 says to

ensure that people

know about the SE

code of ethics and

Software

Engineer's code of

ethics and their

responsibility to it.

Although the SE

Code often

indirectly discusses

honor, ethics, and

responsibility, it

does not say to do

these things

specifically to

enhance the

profession.

Table 4 - Society-Specific Code of Ethics

7.2 PROJECT-SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Financial Responsibility does not apply to our team, as we will not be spending

money on this project. The only cost associated with this project would have been the

servers, but as we are utilizing Michigan Tech's servers, this cost is nonexistent. The

performance level is N/A.

Communication Honesty is an area that is very applicable to us. We must

communicate clearly to both users and stakeholders so that it is clear what is happening

with the code and other data. We are performing very well in this area, so the

performance level is high.

Property Ownership is another important area. We must ensure that the code's safety

in the database is never compromised, as that code is their ideas and properties and

must be protected as such. As of right now, we are performing high in this area.

Health, Safety, andWell-being is an area that can be of concern to us. Regarding

safety, we must ensure that any sensitive data about our users is never compromised.

Regarding mental health, our application will offer many improvements to students

everywhere. Otherwise, in terms of physical health, our application will have little ef on

physical healthfect. We are currently performing high in this area.

Sustainability is another area that does not apply to our team. The only environmental

impact is the energy it takes to run the application, which is extremely minimal. So, this

performance level is N/A.

32

Social Responsibility is another important area. Our application, once finished, will

be a great benefit to society. We must ensure that this does not become a tool for

malevolence. As of right now, we are performing high in this area.

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

Work Competence is the most applicable professional responsibility area. Our team

needs to deliver a high-quality end application that correctly identifies all the errors

promptly. Currently, we have a medium performance level in this area. There is room for

improvement in terms of timeliness.

33

8 Closing Material

8.1 DISCUSSION

We now have a solid foundation for the implementation of the Code Critiquer. We have

documented many antipatterns for later implementation and have an understanding of

what each of our components is going to look like. Additionally, we have a solid plan to

build on moving forward in the semester. All our requirements will be met by the

deadline if we follow the plan outlined in this document.

8.2 CONCLUSION

Our main goal has been to fully research and design our system to ensure smooth

implementation. We have met this goal by clearly defining our components and how they

will interact. Additionally, we have identified a number of antipatterns for the Code

Critiquer and have been constructing helpful feedback for each antipattern. We have also

planned how to test all code developed for this project to ensure that the project can

continue development after our year is done.

8.3 REFERENCES

[1] Ureel, L. C., Brown, L., Sticklen, J., Jarvie-Eggart, M. E., and Benjamin, M. , "Work in

Progress: The RICA Project: Rich, Immediate Critique of Antipatterns in Student

Code," in Proceedings of the 6th Educational Data Mining in Computer Science

Education (CSEDM), 2022, 75-81. http://doi.org/10.5281/zenodo.6983498

[2] Ureel, L. C., and Wallace, C. , "Automated Critique of Early Programming

Antipatterns," in SIGCSE '19: Proceedings of the 50th ACM Technical

Symposium on Computer Science Education, 2022, 738-744.

http://doi.org/10.1145/3287324.3287463

http://doi.org/10.5281/zenodo.6983498
http://doi.org/10.1145/3287324.3287463

34

8.4 TEAM CONTRACT

TeamMembers

● Nicholas Carber

● Conner Cook

● Brandon Ford

● Emily Huisinga

● Sage Matt

● Cade Robison

Team Procedures

1. Day, time, and location for regular team meetings

● Thursday 1:00-1:45 hybrid (Discord or library), Sundays case-by-case

2. Preferred method of communication updates, reminders, issues, and scheduling

● Discord

3. Decision-making policy:

● Majority vote

4. Procedures for record keeping:

● Shared document that everyone can contribute to

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

● Be on time and communicate if you can’t attend

2. Expected level of responsibility for team assignments, timelines, and deadlines:

● Attempt to complete all tasks on time to the best of your ability

● Reach out for help if needed

3. Expected level of communication with other team members:

● Reach out to team members if you are struggling with a task in the project

● Keep team members updated on progress

● Acknowledge messages in Discord

4. Expected level of commitment to team decisions and tasks:

● Everyone should contribute to conversations

● Hold each other accountable

35

Leadership

1. Leadership roles for each team member:

● Nicholas Carber - Regex Support

● Conner Cook - AST Support

● Brandon Ford - Database Administrator

● Emily Huisinga - Frontend

● Sage Matt - Frontend

● Cade Robison - Test Suite Support

2. Strategies for supporting and guiding the work of all team members:

● Use GitLab’s issue board to weight issues based on estimated workload

● Distribute the issues to team members evenly, with consideration for an

individual’s pre-existing commitments and overall availability to work.

3. Strategies for recognizing the contributions of all team members:

● Issues will be assigned, so there will be a record of work done

Collaboration and Inclusion

1. Skills, expertise, and unique perspectives each member brings to the team:

● Brandon: I have taken CPR E 288, so I have had some experience with

embedded systems topics and programming. I have also taken SE 185 and CPR E

308, which have given me more C programming experience. In addition to this, I

work as a computer science tutor, so I have some idea of the common issues

novice programmers run into.

● Sage: I've had various internships and working experiences, which include

working with WPF application development, MATLAB, and most currently

embedded systems and C.

● Cade: I have had experience with agile development as a part of a scrum team

during an internship. I have also had a lot of experience programming in multiple

languages for classes here at Iowa State. I also have experience teaching

inexperienced Computer and Software engineers as a TA for CPRE 281.

● Nicholas: I had an internship working in an agile development cycle. I’ve also

done some data science work. I’ve also written a lot of tests: unit, functional, and

performance.

● Emily: I’ve had much experience with an intense code review process (my

internship required 2 code reviews and one quality assurance review). I also was

a TA for SE/CPRE 185 for five semesters, so I have experience working with

novice programmers.

● Conner: I have a psych and biomedical minor, so maybe that could offer some

new perspective.

36

2. Strategies for encouraging and supporting contributions and ideas from all members:

● Ensure that everyone is being listened to and respected.

3. Procedures for identifying and resolving collaboration or inclusion issues:

● First, try to work it out inside the group. If you are uncomfortable speaking with

the person individually, reach out to another group member to try and open a

discussion. If escalation is needed, first reach out to the TA, then the professor.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:

● Have fun

● Make a functional application

● Keep on time with meetings

● Complete required tasks by the end of each sprint

2. Strategies for planning and assigning individual and team work:

● Maintain issue board

● Assign tasks as equally as possible

3. Strategies for keeping on task:

● Set strict time slots for meetings

● Set strict deadlines for tasks

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

● Bring them up at team meetings if necessary; otherwise address them on Discord.

2. What will your team do if the infractions continue?

● Address with TA or professor if necessary.

37

a) I participated in formulating the standards, roles, and procedures as stated in this

contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Sage Matt DATE: 12/3/23

2) Brandon Ford DATE: 12/3/23

3) Conner Cook DATE: 12/3/23

4) Emily Huisinga DATE: 12/3/23

5) Nicholas Carber DATE: 12/3/23

6) Cade Robison DATE: 12/3/23

